13,760 research outputs found

    Look before you leap: a confidence-based method for selecting species criticality while avoiding negative populations in Ď„\tau-leaping

    Get PDF
    The stochastic simulation algorithm was introduced by Gillespie and in a different form by Kurtz. There have been many attempts at accelerating the algorithm without deviating from the behavior of the simulated system. The crux of the explicit τ\tau-leaping procedure is the use of Poisson random variables to approximate the number of occurrences of each type of reaction event during a carefully selected time period, τ\tau. This method is acceptable providing the leap condition, that no propensity function changes “significantly” during any time-step, is met. Using this method there is a possibility that species numbers can, artificially, become negative. Several recent papers have demonstrated methods that avoid this situation. One such method classifies, as critical, those reactions in danger of sending species populations negative. At most, one of these critical reactions is allowed to occur in the next time-step. We argue that the criticality of a reactant species and its dependent reaction channels should be related to the probability of the species number becoming negative. This way only reactions that, if fired, produce a high probability of driving a reactant population negative are labeled critical. The number of firings of more reaction channels can be approximated using Poisson random variables thus speeding up the simulation while maintaining the accuracy. In implementing this revised method of criticality selection we make use of the probability distribution from which the random variable describing the change in species number is drawn. We give several numerical examples to demonstrate the effectiveness of our new metho

    From microscopic to macroscopic descriptions of cell\ud migration on growing domains

    Get PDF
    Cell migration and growth are essential components of the development of multicellular organisms. The role of various cues in directing cell migration is widespread, in particular, the role of signals in the environment in the control of cell motility and directional guidance. In many cases, especially in developmental biology, growth of the domain also plays a large role in the distribution of cells and, in some cases, cell or signal distribution may actually drive domain growth. There is a ubiquitous use of partial differential equations (PDEs) for modelling the time evolution of cellular density and environmental cues. In the last twenty years, a lot of attention has been devoted to connecting macroscopic PDEs with more detailed microscopic models of cellular motility, including models of directional sensing and signal transduction pathways. However, domain growth is largely omitted in the literature. In this paper, individual-based models describing cell movement and domain growth are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge by making the lattice size variable over time. A reaction-diffusion master equation formalism is generalised to the case of growing lattices and used in the derivation of the macroscopic PDEs

    Going from microscopic to macroscopic on nonuniform growing domains

    Get PDF
    Throughout development, chemical cues are employed to guide the functional specification of underlying tissues while the spatiotemporal distributions of such chemicals can be influenced by the growth of the tissue itself. These chemicals, termed morphogens, are often modeled using partial differential equations (PDEs). The connection between discrete stochastic and deterministic continuum models of particle migration on growing domains was elucidated by Baker, Yates, and Erban [ Bull. Math. Biol. 72 719 (2010)] in which the migration of individual particles was modeled as an on-lattice position-jump process. We build on this work by incorporating a more physically reasonable description of domain growth. Instead of allowing underlying lattice elements to instantaneously double in size and divide, we allow incremental element growth and splitting upon reaching a predefined threshold size. Such a description of domain growth necessitates a nonuniform partition of the domain. We first demonstrate that an individual-based stochastic model for particle diffusion on such a nonuniform domain partition is equivalent to a PDE model of the same phenomenon on a nongrowing domain, providing the transition rates (which we derive) are chosen correctly and we partition the domain in the correct manner. We extend this analysis to the case where the domain is allowed to change in size, altering the transition rates as necessary. Through application of the master equation formalism we derive a PDE for particle density on this growing domain and corroborate our findings with numerical simulations

    Recycling random numbers in the stochastic simulation algorithm

    Get PDF
    The stochastic simulation algorithm (SSA) was introduced by Gillespie and in a different form by Kurtz. Since its original formulation there have been several attempts at improving the efficiency and hence the speed of the algorithm. We briefly discuss some of these methods before outlining our own simple improvement, the recycling direct method (RDM), and demonstrating that it is capable of increasing the speed of most stochastic simulations. The RDM involves the statistically acceptable recycling of random numbers in order to reduce the computational cost associated with their generation and is compatible with several of the pre-existing improvements on the original SSA. Our improvement is also sufficiently simple (one additional line of code) that we hope will be adopted by both trained mathematical modelers and experimentalists wishing to simulate their model systems

    Strike Three: Umpires' Demand for Discrimination

    Get PDF
    We explore umpires' racial/ethnic preferences in the evaluation of Major League Baseball pitchers. Controlling for umpire, pitcher, batter and catcher fixed effects and many other factors, strikes are more likely to be called if the umpire and pitcher match race/ethnicity. This effect only exists where there is little scrutiny of umpires' behavior -- in ballparks without computerized systems monitoring umpires' calls, at poorly attended games, and when the called pitch cannot determine the outcome of the at-bat. If a pitcher shares the home-plate umpire's race/ethnicity, he gives up fewer runs per game and improves his team's chance of winning. The results suggest that standard measures of salary discrimination that adjust for measured productivity may generally be flawed. We derive the magnitude of the bias generally and apply it to several examples.

    Strike Three: Umpires' Demand for Discrimination

    Get PDF
    We explore how umpires' racial/ethnic preferences are expressed in their evaluation of Major League Baseball pitchers. Controlling for umpire, pitcher, batter and catcher fixed effects and many other factors, strikes are more likely to be called if the umpire and pitcher match race/ethnicity. This effect only exists where there is little scrutiny of umpires' behavior – in ballparks without computerized systems monitoring umpires' calls, at poorly attended games, and when the called pitch cannot determine the outcome of the at-bat. If a pitcher shares the home-plate umpire's race/ethnicity, he gives up fewer hits, strikes out more batters, and improves his team's chance of winning. The general implication is that standard measures of salary discrimination that adjust for measured productivity may be flawed. We derive the magnitude of the bias generally and apply it to several examples.strategic interactions, worker evaluation, wage equations, economics of sports

    Isotropic model for cluster growth on a regular lattice

    Get PDF
    There exists a plethora of mathematical models for cluster growth and/or aggregation on regular lattices. Almost all suffer from inherent anisotropy caused by the regular lattice upon which they are grown. We analyze the little-known model for stochastic cluster growth on a regular lattice first introduced by Ferreira Jr. and Alves [J. Stat. Mech. Theo. & Exp. (2006) P11007], which produces circular clusters with no discernible anisotropy. We demonstrate that even in the noise-reduced limit the clusters remain circular. We adapt the model by introducing a specific rearrangement algorithm so that, rather than adding elements to the cluster from the outside (corresponding to apical growth), our model uses mitosis-like cell splitting events to increase the cluster size. We analyze the surface scaling properties of our model and compare it to the behavior of more traditional models. In “1+1” dimensions we discover and explore a new, nonmonotonic surface thickness scaling relationship which differs significantly from the Family-Vicsek scaling relationship. This suggests that, for models whose clusters do not grow through particle additions which are solely dependent on surface considerations, the traditional classification into “universality classes” may not be appropriate

    The importance of the Voronoi domain partition for position-jump reaction-diffusion processes on non-uniform rectilinear lattices

    Get PDF
    Position-jump processes are used for the mathematical modeling of spatially extended chemical and biological systems with increasing frequency. A large subset of the literature concerning such processes is concerned with modeling the effect of stochasticity on reaction-diffusion systems. Traditionally, computational domains have been divided into regular voxels. Molecules are assumed well mixed within each of these voxels and are allowed to react with other molecules within the same voxel or to jump to neighboring voxels with predefined transition rates. For a variety of reasons implementing position-jump processes on irregular grids is becoming increasingly important. However, it is not immediately clear what form an appropriate irregular partition of the domain should take if it is to allow the derivation of mean molecular concentrations that agree with a given partial differential equation for molecular concentrations. It has been demonstrated, in one dimension, that the Voronoi domain partition is the appropriate method with which to divide the computational domain. In this Brief Report, we investigate theoretically the propriety of the Voronoi domain partition as an appropriate method to partition domains for position-jump models in higher dimensions. We also provide simulations of diffusion processes in two dimensions in order to corroborate our results

    Research and applications: Artificial intelligence

    Get PDF
    The program is reported for developing techniques in artificial intelligence and their application to the control of mobile automatons for carrying out tasks autonomously. Visual scene analysis, short-term problem solving, and long-term problem solving are discussed along with the PDP-15 simulator, LISP-FORTRAN-MACRO interface, resolution strategies, and cost effectiveness
    • …
    corecore